Inferring the temperature dependence of population parameters: the effects of experimental design and inference algorithm
نویسندگان
چکیده
Understanding and quantifying the temperature dependence of population parameters, such as intrinsic growth rate and carrying capacity, is critical for predicting the ecological responses to environmental change. Many studies provide empirical estimates of such temperature dependencies, but a thorough investigation of the methods used to infer them has not been performed yet. We created artificial population time series using a stochastic logistic model parameterized with the Arrhenius equation, so that activation energy drives the temperature dependence of population parameters. We simulated different experimental designs and used different inference methods, varying the likelihood functions and other aspects of the parameter estimation methods. Finally, we applied the best performing inference methods to real data for the species Paramecium caudatum. The relative error of the estimates of activation energy varied between 5% and 30%. The fraction of habitat sampled played the most important role in determining the relative error; sampling at least 1% of the habitat kept it below 50%. We found that methods that simultaneously use all time series data (direct methods) and methods that estimate population parameters separately for each temperature (indirect methods) are complementary. Indirect methods provide a clearer insight into the shape of the functional form describing the temperature dependence of population parameters; direct methods enable a more accurate estimation of the parameters of such functional forms. Using both methods, we found that growth rate and carrying capacity of Paramecium caudatum scale with temperature according to different activation energies. Our study shows how careful choice of experimental design and inference methods can increase the accuracy of the inferred relationships between temperature and population parameters. The comparison of estimation methods provided here can increase the accuracy of model predictions, with important implications in understanding and predicting the effects of temperature on the dynamics of populations.
منابع مشابه
Bayesian approach to inference of population structure
Methods of inferring the population structure, its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance. In this article, first, motivation and significance of studying the problem of population structure is explained. In the next section, the applications of inference of p...
متن کاملPrediction of Methyl Salicylate Effects on Pomegranate Fruit Quality and Chilling Injuries using Adaptive Neuro-Fuzzy Inference System and Artificial Neural Network
Adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm–artificial neural network (GA-ANN) were investigated for predicting methyl salicylate (MeSA) effects on chilling injuries and quality changes of pomegranate fruits during storage. Fruits were treated with MeSA at three concentrations(0, 0.01 and 0.1 mM) and stored under chilling temperature for 84 days. ANFIS and GA-ANN models ...
متن کاملOptimization of Minimum Quantity Liquid Parameters in Turning for the Minimization of Cutting Zone Temperature
The use of cutting fluid in manufacturing industries has now become more problematic due to environmental pollution and health related problems of employees. Also the minimization of cutting fluid leads to the saving of lubricant cost and cleaning time of machine, tool and work-piece. The concept of minimum Quantity Lubrication (MQL) has come in to practice since a decade ago in order to overco...
متن کاملEVELOPMENT OF ANFIS-PSO, SVR-PSO, AND ANN-PSO HYBRID INTELLIGENT MODELS FOR PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE
Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this ...
متن کاملThe Prediction of Forming Limit Diagram of Low Carbon Steel Sheets Using Adaptive Fuzzy Inference System Identifier
The paper deals with devising the combination of fuzzy inference systems (FIS) and neural networks called the adaptive network fuzzy inference system (ANFIS) to determine the forming limit diagram (FLD). In this paper, FLDs are determined experimentally for two grades of low carbon steel sheets using out-of-plane (dome) formability test. The effect of different parameters such as work hardening...
متن کامل